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Abstract: The volatility smile changed drastically around the crash of 1987 and new option

pricing models have been proposed in order to accommodate that change. Deterministic volatility

models allow for more °exible volatility surfaces but refrain from introducing additional risk-factors.

Thus, options are still redundant securities. Alternatively, stochastic models introduce additional

risk-factors and options are then needed for spanning of the pricing kernel. We develop a statistical

test based on this di®erence in spanning. Using daily S&P500 index options data from 1986-1995,

our tests suggest that both in- and out-of-the-money options are needed for spanning. The ¯ndings

are inconsistent with deterministic volatility models but are consistent with stochastic models which

incorporate additional priced risk-factors such as stochastic volatility, interest rates, or jumps.
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Introduction

What is a good model to price equity derivatives and to manage risk? Starting from Black

and Scholes (1973), a common approach in the derivative pricing literature has been to model the

underlying asset as a geometric Brownian motion with constant volatility. Early tests of options on

stocks such as Rubinstein (1985) more or less supported the empirical implications of a geometric

Brownian motion for the option market. However, after the 1987 crash, the empirical evidence

is di®erent. Using observations on S&P500 index options from 1986 to 1992, Rubinstein (1994)

documents that the violations of the Black and Scholes model are substantially larger after the 1987

crash and increasing over time. Similar patterns have also been documented in the UK, German,

and Japanese index option markets by Gemmill and Kamiyama (1997). In the post-crash period,

S&P500 options exhibit a steep volatility smile, that is the implied volatility of options is often

decreasing and convex in the strike price, instead of being constant as predicted by the Black and

Scholes model. The size of the violations is such that they cannot be explained just by market

imperfections.

Several studies have suggested extensions of the Black and Scholes model to account for the

volatility smile and other empirical violations of the original model. These extensions can be loosely

grouped into two main approaches: deterministic volatility models and stochastic models. Among

the deterministic volatility models we ¯nd (1) the constant elasticity of variance model of Cox

and Ross (1976); (2) the implied binomial tree model of Rubinstein (1994); (3) the deterministic

volatility models of Dupire (1994) and Derman and Kani (1994); (4) the kernel approach by Ait-

Sahalia and Lo (1998). Among the stochastic models we ¯nd (5) the stochastic volatility models of

Heston (1993), Hull and White (1987), Melino and Turnbull (1990, 1995), Scott (1987), Stein and

Stein (1991), and Wiggins (1987); (6) the jump/di®usion models of Merton (1976), Bates (1991),

and Madan and Chang (1996); (7) the stochastic interest rate models of Merton (1973) and Amin

and Jarrow (1991).

The choice of a speci¯c option pricing model has clearly important implications in terms of

the pricing and the implementation of risk management strategies for portfolios of options and

other derivatives securities. The focus of this paper is to provide a statistical test of deterministic

volatility models versus stochastic models and to test if there is an additional priced risk-factor in
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the option market, such as stochastic volatility, interest rates, or jumps.

Deterministic volatility models are attractive for several reasons. First, markets are dynami-

cally complete in these models. Thus, derivative securities can be priced by no-arbitrage without

resorting to full blown general equilibrium models and without the need to estimate risk premia.

Second, deterministic volatility models can potentially capture some empirical regularities, such as

time-varying volatility, the correlation between volatility and the level of the underlying asset, and

some forms of volatility clustering. Third, deterministic volatility models enable us to ¯t the smile

exactly by calibrating the volatility surface of the underlying asset. The attraction here is that it

is possible to generate state price densities that are consistent with current observed option prices.

However, a natural concern regarding the practical use of deterministic volatility models is that

the improved static pricing performance might be obtained at the cost of over¯tting. In this case,

the use of these models in risk management applications and for pricing exotic options would be

limited.

Studies such as Bakshi, Cao, and Chen (1997), Dumas, Fleming and Whaley (1998), Bates

(1998), and Jackwerth and Rubinstein (1998) have explored the empirical performance of competing

option pricing models. These studies compare alternative models by measuring the models' dollar

pricing and hedging errors. Jackwerth and Rubinstein (1998) run an extensive horse race including

several deterministic volatility models and stochastic models. They point out that, although Black

and Scholes is always outperformed by both deterministic volatility models and stochastic models,

the empirical standard deviations of the pricing errors are so large that it is not possible to rank

the competing models. Dumas, Fleming, and Whaley (1998) address a similar set of questions.

They compare the out-of-sample performance of deterministic volatility models and characterize

the trade-o® between in-sample explanatory power and out-of-sample goodness of ¯t. Although

they do not compare the performance of their deterministic volatility models to stochastic models,

they show the extent of over¯tting that deterministic volatility models can generate.

In this paper, we revisit the problem of which option pricing model is superior, and we introduce

a formal statistical test. We do not run another horse race among a number of option pricing models

based on alternative parametric speci¯cations of the underlying asset. Instead, we construct a test

of the main testable implication of any deterministic volatility model, namely, that options are

redundant securities. In that case, there are no additional priced risk-factors, such as stochastic
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volatility, interest rates, or jumps. Then, the payo® of any asset can be replicated with a dynamic

trading strategy, which includes two primitive assets, such as the underlying asset and the risk-free

rate or, equivalently, the underlying asset and the at-the-money option. Our statistical test has

the added advantage that we do not need to resort to exogenous assumptions on the shape of

the potential measurement errors. The test is asymptotically consistent even when the data are

measured with errors.

We ask two questions. First, do the returns on the underlying and the at-the-money option

span the prices in the economy, or do we need additional information from other option returns or

the risk-free rate? Second, is there any di®erence before and after the 1987 crash in terms of the

spanning properties of the option market? We cast these questions into martingale restrictions on

the pricing kernel. Testing our hypotheses within this framework has the advantage, with respect

to previous empirical studies, that we can adopt a semi-parametric approach so that the empirical

results are not model-speci¯c. The only assumption that we make is that there are no arbitrage

opportunities.

The only other empirical studies of the martingale restriction in option pricing are Longsta®

(1995) and Brenner and Eom (1997). They provide a dollar-valued measure of the di®erence

between the spot price and the option implied price of the underlying asset using a polynomial

approximation of the pricing kernel. Longsta® (1995) tests the martingale restriction for a sample

of S&P100 American options from 1988 to 1989 using Hermite polynomials to approximate the

pricing kernel. He rejects the null hypothesis that the implied level of the underlying is equal

to the observed value. Brenner and Eom (1997) run a similar test using a di®erent polynomial

approximation and weekly data on S&P500 European options from January 1993 to December

1994. They ¯nd that the implied value of the underlying in the option market is close, in economic

terms, to the observed value in the spot market.

For the actual estimation of our test statistics we use two metrics. The ¯rst is the Generalized

Method of Moments (GMM) metric, which is known to be optimal in the sense of attaining the

asymptotic e±ciency bound. A well-known problem with the GMM metric is that the optimal

weighting matrix is model-dependent and asymptotic chi-square tests typically reward models that

generate highly volatile pricing errors. For this reason, we also present results based on the ±-

metric of Hansen and Jagannathan (1997) which has the advantage of being model-independent.
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For each metric, we run conditional and unconditional tests based on the Principle of No Arbitrage,

which requires that assets with the same payo® have the same price and that the state prices are

non-negative in every state.

When we run the tests unconditionally, we ¯nd that both tests strongly reject the null hypoth-

esis that in- and out-of-the-money options are redundant securities when the at-the-money option

and the underlying asset are used to span the payo® space. The rejection is generally sharper

post-crash. The conditional tests con¯rm these ¯ndings. The results reject generalizations of the

Black and Scholes (1973) model based on deterministic volatility models as in the models (1)-(4)

above. However, they support the alternative stochastic models where options are not redundant

securities. The stochastic models (5)-(7) are characterized by their additional priced risk-factors

such as stochastic volatility, interest rates, or jumps.

The structure of the paper is as follows. In section 2, we link the option returns to the pricing

kernel for the economy and describe the unconditional tests based on the GMM metric. Section

3 describes the data set. Section 4 discusses the conditional tests based on the GMM metric.

Section 5 investigates the small sample properties of the tests and the robustness with respect to

the presence of measurement errors in option prices. The tests based on the model-independent

±-metric are discussed in Section 6. Section 7 concludes.

1 The Martingale Representation and the Cross Section of Option

Prices

In this section, we describe the methodology used to test deterministic volatility models. All no-

arbitrage pricing models derive the theoretical prices of contingent claims by requiring their prices to

be equal to the cost of a replicating portfolio constructed from a set of securities that are presumed

to span the state space. For example, any option can be replicated in the Black-Scholes economy

by a portfolio consisting of the underlying asset and the bond. In the absence of transaction costs

and other market frictions, this restriction is equivalent to a martingale representation of option

prices. This martingale restriction is the main source of testable empirical implications, and it will

be the base of our empirical analysis.

Cox and Ross (1976) develop a theory of option pricing by linking dynamic replication and
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risk neutral valuation. Harrison and Kreps (1979) and Hansen and Richard (1987) generalize this

approach to a very general class of economies with the minimum requirement that securities have

payo®s with ¯nite second moments. We follow their set-up and consider a frictionless economy

endowed with an objective probability space fI; B; Qg. In this economy there are securities with

square integrable payo®s bi 2 L2 and non-singular second-moment matrix E (bb0jI). In absence of

market frictions, the space of attainable payo®s P is a linear space obtained as linear combinations

with portfolio weights ci of the basis fbig :

P ´ fp 2 L2 : p =
X

i

bi ¢ ci; for some ci in the information set Ig (1)

The ci need not be constant and can in general be time-varying functions of the information set

I. Let ¼(p) be the price of a portfolio with payo® p. Harrison and Kreps (1979), Chamberlain and

Rothschild (1983), and Hansen and Richard (1987) show that in order for the Law of One Price

to hold, the price functional ¼(¢) must be linear1 and continuous in p. Since derivative securities

include payo®s h that are non-linear in the basis bi we would like to study the empirical properties

of asset pricing models that extend ¼(¢) from P to all of L2. The weakest requirement for any such

derivative pricing model is to satisfy the Principle of No Arbitrage.

De¯nition (Principle of No Arbitrage). A pricing model ¼(¢) does not admit arbitrage

opportunities in L2 if, for any h 2 L2 such that h ¸ 0, and Eh2 > 0; it is the case that ¼(h) > 0.

Harrison and Kreps (1987) and Hansen and Richard (1987) explore the testable restrictions

induced by the Principle of No Arbitrage. They show that the absence of arbitrage (a) implies the

Law of One Price and (b) is equivalent to the existence of a positive pricing kernel m > 0 such that

scaled payo®s are martingales under the objective probability measure Q:

Proposition (Hansen and Richard, 1987). The Principle of No Arbitrage is satis¯ed if

and only if there exists a positive pricing kernel m such that the price of any square integrable

derivative security admits the following representation under the objective probability measure Q:

¼m(h) = EQ(mhjI); with m > 0 almost surely (2)
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1.1 Example 1: the lognormal process

An example of a simple economy in which the pricing kernel m has well known properties is given

by Black and Scholes (1973). They discuss a dynamically complete economy in which it is possible

to replicate and price not only any linear portfolio in P but also non-linear contingent claims, such

as European options. The replicating portfolio uses dynamic trading strategies applied to a basis

of P , consisting of the underlying asset and the risk-free rate. In this economy, the exogenous

dynamics of the underlying asset are assumed to be:

dSt = ¹Stdt + ¾StdWt

Then, there exists a unique process »T > 0 such that: (a) »0 = 1, (b) »t = Et(»t+¢t) and such

that (c) »tSt is a martingale. This process is given by:

»T = exp
·
¡1

2

Z T

0

¡¹
¾

¢2 dt ¡
Z T

0

¡¹
¾

¢
dWt

¸

= exp
h
¡1

2
¹2
¾2T ¡ ¹

¾WT
i

(3)

so that »T is lognormally distributed with mean zero and variance equal to ¹
2

¾2 . The price of a

call option with strike price K, expressed in terms of the objective probability measure, is C0 =

EQ [m0;T ¢ max(0; ST ¡ K)jI0] with m0;T ´ »T
»0

and with the solution given by the Black-Scholes

formula. We note that the logarithm of the pricing kernel mt;t+¢t is exactly spanned by the log

return of a portfolio formed by two assets. When these two assets are the underlying asset and a

cash account Bt, with Bt+¢t = er¢tBt, then the kernel-replicating portfolio is

ln(mt;t+¢t) = 1
2
¹
r¾2 (¹ ¡ ¾2)| {z }

¯1

ln(Bt+¢t
Bt )

| {z }
Return Asset 1

+ ¡¹
¾2|{z}
¯2

ln(St+¢t
St )

| {z }
Return Asset 2

(4)

= ¯0R¤
t+¢t

with R¤
t+¢t being the two dimensional vector of log returns that constitutes the basis.

In a Black and Scholes economy the kernel-replicating portfolio has constant weights
£1
2
¹
r¾2 (¹ ¡ ¾2); ¡¹¾2

¤
.

This property is not shared by the option-replicating portfolio where the delta of the option is a

function of the level of the underlying. It follows that returns on options with any strike price in

a Black and Scholes economy must satisfy the following testable restriction, under the objective

probability measure:

1 = EQ
h
e¯

0R¤t+¢tRt+¢tjIt
i

(5)
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1.2 Example 2: the deterministic volatility model

Even when volatility is not constant, the pricing kernel is uniquely spanned by a portfolio of two

assets as long as the volatility is deterministic. In these deterministic volatility models the price St

of the underlying asset is assumed to follow a generalized geometric Brownian motion

dSt
St = ¹(St; Ht; t)dt + ¾(St;Ht; t)dWt (6)

with ¹(¢) and ¾(¢) depending on the current price of the underlying asset, time, and the history

Ht = fSt¡h; h > 0g of the underlying asset up to time t. In this class of models the pricing kernel

»T is uniquely given by:

»T = exp
·
¡1

2

Z T

0

³
¹t
¾t

´2
dt ¡

Z T

0

³
¹t
¾t

´
dWt

¸
(7)

»T has the property that, under the objective probability, the scaled process »TST is a martingale2

with respect to It. Any well-behaved non-linear contingent claim with terminal payo® pT =

p(ST ;HT ; T ) can be priced by calculating the expected value of »TpT under the objective probability

measure. The price of a call option with terminal payo® max(0; ST ¡K) is therefore C0 = EQ[m0;T

¢max(0; ST ¡ K) jI0] with m0;T ´ »T
»0

. Since there are no priced risk-factors, such as stochastic

volatility, interest rates, or jumps, in the deterministic volatility model the logarithm of mt;t+¢t

can always be replicated by the log returns of a portfolio formed by two assets. However, as the

deterministic volatility is time-varying the portfolio weights are no longer constant but are functions

of the information set I¿ :
ln mt;t+¢t =

Z t+¢t

t
¯0¿R

¤
¿d¿ (8)

with R¤
¿ being the two dimensional vector of log-returns that constitutes the basis, such as the

underlying asset and the risk-free asset. This implies that, in a deterministic volatility model, option

returns must satisfy the following testable restriction, expressed under the objective probability

measure:

1 = EQ
·
e
R t+¢t

t
¯0¿R¤¿d¿Rt+¢tjIt

¸
(9)

Under this hypothesis, given observations on the underlying asset and an at-the-money option,

any information on other securities, such as away-from-the-money options, is redundant and not

needed in order to span the pricing kernel. The advantage of considering this speci¯cation for the
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basis of the payo® space, as opposed to the more common choice of the underlying asset and the risk-

free asset, is that it is independent of the observability of the risk-free asset by the econometrician.

Alternatively, if stochastic volatility, interest rates, or jumps were priced in equilibrium then the

pricing kernel would also be a function of any such additional risk-factor. Then, our above testable

restriction fails to hold when ¯ is restricted to be two-dimensional as additional securities are

needed for spanning. This observation constitutes the basis of our statistical test. We focus on

one-period ahead pricing errors for all securities and measure the additional pricing error generated

by assuming that volatility is deterministic. Equivalently, we measure the additional pricing error

of assuming that just two assets span the pricing kernel.

We now turn to describe the construction of the test statistics. We partition the set of securities

under investigation into two subsets R¤ = [R¤
a; R¤

b ]. R¤
a is the payo® space generated by the

securities believed to span the entire investment opportunity set (e.g. the underlying asset and

the at-the-money option), and R¤
b is the payo® space of all remaining (redundant) securities, such

as away-from-the-money options and the risk-free rate. If R¤(¿) is the instantaneous logarithmic

return on a security, then

ln mt;t+¢t =
Z t+¢t

t
¯0a(¿ )R¤

a(¿) + ¯0b(¿)R¤
b(¿)d¿ (10)

in which the parameters ¯(¿) of the trading strategy are function of the information set I¿ and

are approximated by a Taylor series expansion in the underlying asset. This parametrization of

the pricing kernel has several desirable properties. First, since mt;t+¢t is an exponential of a linear

combination of log returns it satis¯es the no-arbitrage condition that m ¸ 0 in any state of the

world. Second, the payo®s Rt;t+¢t which are used to identify the discount factor always contain

the unit payo®. Therefore, the expected value of m is equal to the value of a discount account:

EQ[mt;t+1jIt] = Zt;t+¢t. Third, since we are concerned about the possibility of rejecting the null

hypothesis of spanning due to market microstructure issues, such as staleness of prices in the

cash and option markets, we deliberately omit the risk-free asset from R¤
a, so that, in the second

version of the test, R¤
a contains elements of both the cash market (the underlying asset) and of

the option market (the at-the-money option). We test the additional spanning provided by the

away-from-the-money options.

Finally, testing if options are redundant securities is equivalent to testing, in the Euler restriction

in Equation (9), that the null hypothesis Ho : ¯0b(¿) = 0 holds. The intuition of the test statistic is
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simple: under the null hypothesis that there are no additional priced risk-factors, such as stochastic

volatility, interest rates, or jumps, option returns scaled by mt;t+¢t are martingales, and the sample

average of (mt;t+¢tRt+¢t¡1) needs to converge to zero. Alternatively, if there are additional priced

risks then mt;t+¢t cannot be spanned by only two assets and the sample average of the scaled option

returns minus one converges away from zero.

Additionally, the statistical test has the following appealing economic interpretation. The ex-

pected value of mt;t+¢tRt+¢t is the risk adjusted value of a one dollar position in an asset (or

portfolio) with payo® R. Thus, EQ(mt;t+¢tRt+¢t ¡ 1) measures today's value of a trading strat-

egy where we borrow one dollar to invest in a trading strategy with payo® Rt+¢t. Given any

no-arbitrage model for mt;t+¢t, the value of this portfolio should be zero if its payo® could be

replicated using the same basis assets which are suggested by the model. If the null hypothesis is

true and away-from-the-money options are redundant then the pricing errors should not increase

when these redundant assets are not used to span the pricing kernel. As constructed, our test

goes beyond testing deterministic volatility models versus stochastic models. It tests also if any

additional risk-factor, such as stochastic volatility, interest rates, or jumps, is priced in equilibrium.

2 Data

The empirical tests are based on the Berkeley database containing all minute by minute European

option quotes and trades on the S&P500 index traded on the CBOE from April 2, 1986 to December

29, 1995. The database also contains all futures trades and quotes on the S&P500. Our goal is to

obtain a panel of daily return observations on the index, the risk-free rate, and on several options

with di®erent strike price/index level ratios (moneyness) and constant maturity.

It is important to use options with constant moneyness and maturity since our test statistics

involve the conditional covariance matrix of option pricing errors. If the maturity and moneyness

of options were not constant over time, then the conditional covariance matrix of the pricing errors

would be time-varying, too. This would require additional exogenous assumptions on the structure

of the covariance matrix and the estimation of several additional parameters, which could lead to

additional estimation error in our test statistics.

² Index Level. Traders typically use the index futures market rather than the cash market to
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hedge their option positions. The reason is that the cash market prices lag futures prices by

a few minutes due to lags in reporting transactions of the constituent stocks in the index.

We check this claim by regressing the index on each of the ¯rst twenty minute lags of the

futures price. The single regression with the highest adjusted R2 was assumed to indicate the

lag for a given day. The median lag of the index over the 1542 days from 1986 to 1992 was

seven minutes. Because the index is stale, we compute a future-based index for each minute

from the future market St =
¡ rf
d

¢¡¢ Ft+¢. For each day, we use the median interest rate

implied by all futures quotes and trades and the index level at that time. We approximate

the dividend yield by assuming that the dividend amount and timing expected by the market

were identical to the dividends actually paid on the S&P500 index. However, some limited

tests indicate that the choice of the index does not seem to a®ect the results of this paper.

² Interest Rates. We compute implied interest rates embedded in the European put-call parity

relation. Armed with option quotes, we calculate separate lending and borrowing interest

returns from put-call parity where we used the above future-based index. We assign, for each

expiration date, a single lending and borrowing rate to each day which is the median of all

daily observations across all striking prices. We then use the average of those two interest

rates as our daily spot rate for the particular time-to-expiration. Finally, we obtain the

interpolated 45 day interest rate from the implied forward curve. If there is data missing, we

assume that the spot rate curve can be extrapolated horizontally for the shorter and longer

times-to-expiration. Again, some limited tests indicate that the results are not a®ected by

the exact choice of the 45 day interest rate. While we need the 45 day interest rate in order to

compute the option returns, we also are interested in daily return observation of the risk-free

rate. Thus, we also incorporate the federal funds (fed-funds) rate into our data-set.

² Options with Constant Moneyness and Maturity. In our data-set, all puts are translated into

calls using European put-call parity. Then, we compute daily rates of return on constant

maturity 45 day options with moneyness of 0.96, 0.98, 1, 1.02 and 1.04. We choose 45 days

as our target maturity, since, given the frequency at which new options are introduced by the

exchange, every 30 days we observe options with exactly 45 days-to-expiration. In comparison,

for 6 months options this happens only every 3 months. Moreover, most of the trading activity
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in the option market is concentrated in the nearest (0 to 30 days-to-expiration) and second

nearest contract (30 to 60 days-to-expiration).

We choose 4% in- and out-of-the-money as our furthest moneyness levels since for short

maturity options the measurement errors contained in very-deep-out-the-money options, say

10%, are potentially very large as the price is relatively small with respect to the tick size.

There will normally be four observed options straddling the target moneyness and maturity.

One potential way of obtaining our target option would be to use a bilinear interpolation

of the implied volatility surface, as described in Fleming, Ostdiek, and Whaley (1995) and

Gruenbichler and Longsta® (1996) and used for the Market Volatility Index (VIX). However,

from the perspective of this paper, such interpolated option is not a traded security. Thus, it

should not expected to satisfy the martingale restriction. For this reason, we use a di®erent

approach that is less °exible but more rigorous with respect to the purpose of our empirical

analysis. Each trading day, we calculate the Greeks, namely delta, gamma, theta, and vega of

the target (interpolated) option and the four neighboring options. Then, we ¯nd the portfolio

consisting of the four market traded neighboring options which best matches the Greeks of

the target option while limiting the weights to the interval 0 to 1. The portfolio weights are

then kept ¯xed and the value of this tradable portfolio is marked-to-market the following day

using available market quotes. The advantage of this approach is that, since this portfolio is a

traded asset, then its return must be a martingale under the risk neutral probability measure.

This fact holds even if the weights are incorrect because we misspeci¯ed the reference model

that is used to compute the Greeks.

² Arbitrage Violations. In the process of setting up the database, we check for a number of errors

which might have been contained in the original minute by minute transaction level data. We

eliminate a few obvious data-entry errors as well as a few quotes with excessive spreads {

more than 200 cents for options and 20 cents for futures. General arbitrage violations are

eliminated from the data-set. Within each minute we keep the largest set of option quotes

which does not violate:

Sd¡t ¸ Ci ¸ max[0; Sd¡t ¡ Kir¡tf ]

We also check for violations of vertical and butter°y spreads.
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Table 1, about here

We restrict our attention on options which are no more than 4% away-from-the-money. The

reason is due to the depth of the market and to the relative impact of measurement errors for

options which are deep out-the-money. Table 1 presents the average daily notional volumes of

traded S&P500 index options for the moneyness levels used in the empirical analysis. The volumes

are aggregate numbers across the two contracts with maturities straddling 45 days. The total

market value of at-the-money options has increased ten-fold over 10 years. In 1995, the aggregate

volume of at-the-money options was $263m. For moneyness levels out to §5%, the CBOE option

market is very active. In 1995, the volume of options with moneyness levels between 0.95 and 0.97

was $119m, still almost half of the at-the-money volume. The volume of options with moneyness

levels between 1.03 and 1.05 was $63m. However, beyond moneyness levels of 1.05 the option

volumes are substantially lower.

Tables 2a and 2b, about here

Tables 2a and 2b report sample statistics of the data-set which consists of 2426 observations for

each of our seven daily return series. These seven series are the returns of the underlying asset, the

risk-free rate for which use the fed-funds rate as a proxy, and ¯ve 45 day options with moneyness

levels of 0.96, 0.98, 1, 1.02, and 1.04. We term these options the deep-in-the-money, in-the-money,

at-the-money, out-of-the-money, and deep-out-of-the-money call options, respectively. The mean

returns and volatilities of the options may appear high with respect to the return and volatility of

the market. This is due to the leverage implicit in option positions. Option volatilities and excess

returns over short horizons such as the present one day are multiples of the market return, with

the multiplier being the elasticity of the option price with respect to the index level (= ¢ SC ). As

a rough check, we use the Black-Scholes formula to calculate options prices and deltas based on

the historical sample averages for the interest rate of 5.43%, the dividend yield of 3.12%, and the

volatility of 16.16%. The index level is set to 1 without loss of generality and the strike prices are

0.96, 0.98, 1.00, 1.02, and 1.04. Time-to-maturity is 45 days. The elasticities for the ¯ve options

are 16, 19, 22, 26, and 30. That would imply returns on these options of 82, 97, 112, 132, and 152
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basis points per trading day and volatilities of 1376, 1634, 1892, 2236 and 2580 basis points per

trading day.

The volatilities of the observed option returns line up nicely, except for the deep-out-of-the-

money option which has an observed volatility of 3431. Potential reasons for such deviation are our

assumption that the Black-Scholes formula holds with the same parameters for about a decade and

the fact that the deep-out-of-the-money options are the least liquid of the ¯ve options. Continuing

our comparisons, the average returns of the observed options are lower than in the Black and

Scholes case, except for the deep-out-of-the-money options. However, the estimates of the average

returns in the Black-Scholes case have very wide 99% con¯dence intervals which we base on §3 ¾p
T

(= 74, 89, 111, 147, and 208). Namely, the lower limits are 8, 8, 1, -15, and -56 and the upper

limits are 156, 186, 223, 279, and 360. Then, all observed option returns lie within the §3 standard

deviation band.

Although this may be interpreted as an indication of a risk premium implicit in option prices,

it can still be reconciled with more °exible deterministic volatility models in which volatility is not

restricted to be °at and constant at 16.16%, as in the Black and Scholes reference case. Adjusting

the option elasticities for the volatility smile, which associates higher (lower) implied volatilities

with in-the-money (out-of-the-money) options, would lead to results more in line with the observed

returns and volatilities.

Still in Table 2a, we ¯nd that the autocorrelation coe±cients quickly decay to zero and, with

the exception of the risk-free rate, are not signi¯cantly di®erent from zero. In the following Table 2b

we report the contemporaneous correlation between the seven assets. As expected, the correlations

are higher for options with more similar moneyness levels.

2.1 The unconditional test

A necessary condition for the Principle of No Arbitrage can be obtained by taking unconditional

expectations of Equation (9), from which:

1 = E (mt;t+¢tRt+¢t) (11)

Let R¤
t;t+¢t;n be the vector of log returns sampled at intervals3 ¢t=n that are used to span the

¯nite sample analog of the pricing kernel mt;t+¢t in Equation (11). In the unconditional case, we
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focus on the time-series properties of the one-period ahead unexpected returns:

h0t+¢t(m(¯; R¤); R) ´ 10 ¡ m (¯; R¤)R0
t;t+¢t (12)

Under the null hypothesis that the model is correctly speci¯ed, ht+¢t is a martingale in sequence.

Let the time average of the one period unexpected returns be hT = 1
T

PT
t=1 ht so that, if Rt;t+¢t is

stationary, hT ! E(ht+¢t). Hansen (1982) obtains a consistent estimators of ¯ by minimizing the

GMM quadratic form of the average unexpected returns h0TW
¡1
T hT :

^̄ ´ argmin
£
T ¢ h0T (¯)W¡1

T hT (¯)
¤

(13a)

The weighting matrix WT is chosen to be a consistent estimator of the unconditional asymptotic

covariance of the pricing errors ht. Such consistent estimators can be computed using the frequency

zero spectral density estimators developed by Newey and West (1987) and Andrews (1991). The,

Hansen (1982) shows that ^̄ is e±cient and
p

T [^̄ ¡¯o] is asymptotically normally distributed with

covariance matrix [(E @h
0
T
@¯ )W¡1

T (E @hT@¯ )]¡1. Let hrT be the restricted counterpart of hT , under the

null hypothesis that Ho : ¯b = 0, then the following asymptotic result holds:

Test 1 (Unconditional Test, GMMmetric)

Under the null hypothesis that the assets in Rb are redundant given Ra,

dT ´ T [hrT (^̄a) ¡ hT (^̄)]0W¡1
T [hrT (^̄a) ¡ hT (^̄)] ! Â2

(nb) (14)

is asymptotically distributed chi-square with nb degrees of freedom, where nb is the number of

redundant securities.

The statistic is a quadratic form of the increase in the unexpected returns due to the null

hypothesis that only two are needed to span the pricing kernel. If the null hypothesis is satis¯ed

then the pricing errors should not increase signi¯cantly as the null hypothesis is imposed and dT

should be close to zero. Other examples of such region subset tests are Braun (1992), Cochrane

and Hansen (1992), DeSantis (1993), Knez (1993), and Bekaert and Urias (1996).

2.2 Empirical results: the unconditional test

In a ¯rst series of tests we choose the sampling frequency ¢t to be one day. However, the results are

robust to changes in the sampling frequency and we report the details below. The unconditional
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test of the martingale condition in Equation (14) is based on seven pricing restrictions, with Rt+¢t

being the (7£1) vector of returns on all the available unconditional investment opportunities, that

is the underlying asset, the risk-free rate, and the ¯ve options. The weighting matrix WT is the

Newey-West (1987) heteroskedastic and autocorrelation consistent estimator of the unconditional

covariance matrix of the seven unexpected returns ht :

WT = ¡0 +
qX

i=1

(1 ¡ i
q + 1

)(¡̂i + ¡̂0¡i)

¡̂i =
1
T

TX

t=i+1

(ht ¡ ¹h)(ht¡i ¡ ¹h)0 and ¹h =
1
T

TX

t=i+1

ht

We choose q to be ¯ve trading days (one week). In Table 3 we show the empirical evidence

from the unconditional chi-square test of Ho : ¯b = 0.

Table 3, about here

For our tests, we specify three di®erent sets of basis R¤
a and non-basis R¤

b returns. In test IIIa, the

null hypothesis states that observations on deep-in- and deep-out-of-the-money options do not add

relevant information to identify the pricing kernel beyond the information already contained in the

returns on the underlying asset and the risk-free rate. In the post-crash and the overall samples,

we strongly reject the hypothesis that the away-from-the-money option returns are redundant at

any con¯dence level. We ¯nd that they price additional risk-factors that are not already spanned

by at-the-money options and the underlying asset. However, in the pre-crash sample, the away-

from-the-money options are redundant at the 34% con¯dence level.

In test IIIb, we change the basis assets slightly and replace the risk-free rate with the at-

the-money option. This speci¯cation allows us to address concerns about market microstructure

di®erences between the cash market and the option market. If there were a su±ciently large lag

between the time at which information is priced in the market for the underlying asset and in

the option market then the null hypothesis might be rejected even if the underlying asset followed

a deterministic volatility model. We can ameliorate these concerns by incorporating both the

underlying asset and an option into the basis set of reference assets. The results of test IIIb

indicate that the away-from-the-money-options are now needed in all three sample periods for

spanning purposes. Even in the pre-crash period do we need the away-from-the-money options, as
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opposed to the ¯ndings in IIIa. One potential reason might be that we do not have any information

on the risk-free rate available for spanning the pricing kernel.

Therefore, in test IIIc, we investigate if the risk-free rate adds information beyond the returns

on the underlying and the at-the-money option. In the post-crash period we ¯nd that the risk-free

rate does add information beyond what is already contained in the two basis securities. However,

the risk-free rate is redundant in the pre-crash period at the 70% con¯dence level.

The results of the spanning tests raise doubts on the e®ectiveness of using highly pliable de-

terministic volatility models for risk management and pricing purposes. The results of the tests

suggest that there is at least one additional priced risk-factor, such as stochastic volatility, interest

rates, or jumps.

3 The Conditional Test

The unconditional pricing restriction in Equation (11) is only a necessary condition for the Principle

of No Arbitrage to hold. For this reason, we now study the null hypothesis that the non-basis returns

are redundant in a conditional setting:

0 = E [ht+¢t j It] (15)

with the unexpected returns ht+¢t de¯ned as in Equation (12). In contrast with the unconditional

case, we assume that arbitrageurs may take hedging decisions conditional on non-trivial information

about the state of the economy. Let Á(!t) be an It-measurable function of a set of ¯nancial variables

measurable at time t such as the level of the underlying asset or the slope of the volatility smile.

Then, we can construct managed portfolios with initial cost Á(!t) and payo® Rt+¢tÁ(!t). Any

return in the economy, such as returns on the underlying asset, the risk-free rate, the options, or

any managed portfolio, has to satisfy Equation (15), that is, both 0 = E(ht+¢tj It) and 0 = E[Á(!t)

£ ht+¢t j It] need to be satis¯ed for any It-measurable function Á(!t). After taking unconditional

expectations we obtain the following expression:

0 = E

2
4 ht+¢t

ht+¢t ­ Á(!t)

3
5 (16)

Let m(¯t; R¤
t;t+¢t;n) be the time-varying pricing kernel of the deterministic volatility model.

The discrete and time-varying parameters ¯t 2 It are parameterized with polynomial expansions
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in the state variable:

Black{Scholes model: ¯(S; ¿) = ¯o

Model 1: ¯(S; ¿) = ¯o + ¯1S¿

Model 2: ¯(S; ¿) = ¯o + ¯1S¿ + ¯2S2
¿

Model 3: ¯(S; ¿) = ¯o + ¯1(S¿ ¡ E¿¡1(S¿ ))

Model 4: ¯(S; ¿) = ¯o + ¯1(S¿ ¡ E¿¡1(S¿ )) + ¯2(S¿ ¡ E¿¡1(S¿ ))2

(17)

So far, we have been using the Black-Scholes Model in our unconditional tests. Models 1 and 2

are more general speci¯cations of deterministic volatility models along the lines of Dumas, Fleming,

and Whaley (1998). Since the underlying asset is drifting over time, we consider two additional

speci¯cations, models 3 and 4, that are expressed in terms of the conditionally demeaned level

of the underlying asset. Model 4 is particularly interesting since it expresses the pricing kernel

in terms of the square conditional innovations of the underlying asset. Although model 4 is still

deterministic and its dynamics are generated by just one Brownian motion it may capture some of

the volatility clustering e®ects that have partly motivated the development of stochastic volatility

models. Finally, we again directly parametrize the functional form of the pricing kernel:

mt;t+¢t = exp

2
4
n¡1X

j=0

¯0a(Stj ; tj)R
¤
a;tj ;tj+1

+ ¯0b(Stj ; tj)R
¤
b;tj ;tj+1

3
5

with t0 = t and
Pn¡1
j=0 [tj+1 ¡ tj ] = ¢t.

We estimate the parameters ¯t using the moment condition in Equation (16) and minimizing

the quadratic GMM criterion:

JT =

2
4 1p
T

TX

t=1

0
@ ht+¢t

ht+¢t ­ Á(!t)

1
A

3
5
0

W¡1
T

2
4 1p
T

TX

t=1

0
@ ht+¢t

ht+¢t ­ Á(!t)

1
A

3
5 (18)

Let the sample average of the conditional pricing errors be hT ´ 1
T

PT
t=1[h

0
t+¢t; Á

0(!t)­h0t+¢t]
0,

and let the superscript r denote the unexpected returns of the restricted model. If WT is chosen to

be a consistent estimator of the asymptotic covariance matrix of [h0t+¢t; Á
0(!t) ­ h0t+¢t]

0 then the

GMM estimator of ¯ is also e±cient. In this case, the following asymptotic result holds:

Test 2 (ConditionalTest,GMMmetric)
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Under the null hypothesis that the assets in R¤
b are redundant given R¤

a,

dc ´ T [hrT (^̄a) ¡ hT (^̄)]0W¡1
T [hrT (^̄a) ¡ hT (^̄)] ! Â2

(n»nb)

is asymptotically distributed chi-square with n» £ nb degrees of freedom, where n» and nb are re-

spectively the number of conditioning variables and the number of redundant securities.

Similar to the unconditional case, we consider a Newey-West autocorrelation and heteroskedas-

ticity consistent estimator of the covariance matrix of the pricing errors with ¯ve lags.

3.1 Empirical results: the conditional test

We now present the empirical results of the conditional tests which incorporate returns on time-

varying managed portfolios. The pricing kernel replicating portfolio will then also have time-varying

portfolio weights ¯¿ as described above.

Table 4, about here

Test IVa presents the results of the test of redundancy of the away-from-the-money option

returns while conditioning on functions of the level of the underlying asset. Across all models,

we ¯nd the unconditional results repeated and for the most part more pronounced. The p-values

in the pre-crash sample tend to be even higher than in the unconditional case while they were

even lower than the unconditional case in the post-crash and overall samples. Test IVb shows

that if the at-the-money option is included in the basis set then spanning is rejected even in the

pre-crash sample and more strongly so in the post-crash and overall samples. Again, the results

tend to be more pronounced than in the unconditional case. Test IVc investigates the redundancy

of the risk-free rate, and the results strengthen the ¯ndings of the unconditional test. Overall, all

unconditional results are con¯rmed both in the speci¯cation expressed in terms of the absolute

level of the underlying asset (model 1 and model 2) and in the speci¯cation expressed in terms of

conditionally demeaned levels of the underlying asset (model 3 and model 4).

4 Robustness of the Tests

Here we discuss the sensitivity of the results to some aspects of the empirical implementation of the

tests. Namely, we consider the sampling frequency of our returns, the use of additional conditioning
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variables, the dependence of our results on trading volume, and ¯nally, the di®erential spanning

properties of option returns with di®erent moneyness. Thereafter, we explore the small sample

properties of the tests without and with measurement errors.

So far, the sampling frequency ¢t
n of all returns on the seven assets was daily, that is ¢t = 1

day and n = 1 day, and the results have been reported in Tables 3 and 4. We test the robustness

of our results by re-running tests based on di®erent sampling frequencies ¢t
n . First, we run the test

statistics for ¢t = 1 day and n = 2 days, that is we measure two-day returns and can rebalance

once after one day. Second, we use ¢t = 1 day and n = 5 days, that is we measure weekly returns

and we can rebalance after every working day of the week. We ¯nd that the results closely track

the ones for the original daily sampling and that the conclusions are not a®ected.

Next, we check the sensitivity of the conclusions to di®erent choices for the conditioning variables

used to obtain time-varying managed portfolios. In addition to polynomials in the absolute and

conditionally demeaned level of the underlying asset, we also consider the slope of the smile and

the level of the interest rate as conditioning variables. We ¯nd that the results closely mirror the

ones in Table 4.

We also consider the dependence of our results on trading volume. For this purpose we create

two subsamples based on trading volumes. In the ¯rst subsample, we consider the returns on

options only on those days where the daily aggregate trading volumes in the option market are in

the top three deciles of the distribution. In the second subsample, we consider the days in which

volumes are in the bottom three deciles. Then, we compare the test statistics. In the post-crash

period, the hypothesis of redundancy of the away-from-the-money options is rejected less strongly

in the subsample with the high trading volumes. However, even for the subsample with high

trading volumes the null hypothesis is soundly rejected at con¯dence levels below 1%. In the pre-

crash period, the cross-section of options remains redundant in both subsamples. As expected, we

conclude that a relatively thin market may have an impact on the ability to replicate the options.

Our ¯ndings are supported by the conditional tests and by the tests based on the ±-metric.

Finally, we investigate if returns on options with di®erent moneyness have di®erential spanning

properties. Out-of-the-money call or put options are much more liquid than in-the-money call

or put options, and put option volume is higher than call option volume by a factor of about 3.

Since we translate all put quotes into call quotes, we ¯nd as expected that the trading volume
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at low moneyness levels (which is driven by the out-of-the-money puts) is higher than for high

moneyness levels (which is driven by the out-of-the-money calls). Table 1 con¯rms that in 1995,

the average daily trading volume of options with moneyness between 0.95-0.97 was twice as high

as that of options with moneyness between 1.03-1.05. Such di®erence in cross-sectional liquidity

could be responsible for di®erent spanning properties. We address this issue by running two sets of

tests. In the ¯rst test, the basis is de¯ned as R¤
a = [Rs; R0:96] while in the second test the basis is

speci¯ed as R¤
a = [Rs; R1:04]. We ask if the spanning properties of in-the-money and out-the-money

options are symmetric, and our tests con¯rm that this is indeed the case. This suggests that the

non-redundancy of the cross-section of option returns is not simply due to liquidity reasons.

4.1 Small-sample properties

The above empirical ¯ndings are all based on asymptotic test statistics. This might be considered

adequate since the data-set contains 2426 daily observations throughout almost 10 years. Nonethe-

less, since the previous tests sharply reject the null hypothesis that there are no priced additional

risk-factors, we want to check the robustness of the tests. In our ¯rst simulation study, we study the

performance of the test statistics in small samples and the approximation error generated by dis-

cretizing the continuous time pricing kernel. In our second simulation study, we add measurement

error, too.

In order to see if the test rejects the null hypothesis even when the null hypothesis is true, we

simulate 1000 days of a cross-section of option prices under the assumption that the underlying

asset follows a constant elasticity of variance (CEV) process. The CEV model is a deterministic

volatility model and only two basis returns are needed for spanning. We then run the spanning

tests and report the results in Table 5.

Table 5, about here

Given a theoretical p-value of 5%, we measure the empirical frequency that the test rejects the

null hypothesis, that is the simulated dT is higher than the rejection level implied by the chi-square

distribution for a p-value of 5%. The di®erence between the empirical rejection frequency and the

5% value is a measure of over-rejection. If there is no bias, this value should asymptotically be

equal to zero. When measurement errors are zero, we ¯nd that the empirical rejection frequency is
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very close to the theoretical level: we reject the null hypothesis 3.45% and 4.02% of times in test

A and test B, respectively, and we ¯nd a slight under-rejection.

We also consider the approximation error generated by discretizing the continuous time pricing

kernel since we simulate the CEV process with 100 intermediate steps within each day. However,

we only observe daily option returns and can only trade once a day. Still, our simulated rejection

frequencies are very close to the theoretical 5% level.

4.2 Small-sample properties with measurement errors

For our second simulation study we consider the case in which option prices are observed with

errors. Let Rt be the return on option prices simulated in a CEV environment and let R̂t be the

observed option return, with R̂t = Rt + ¾""t. Given a value for ¾", the standard deviation of the

measurement errors, we estimate the empirical frequency of rejection of the null hypothesis that

options are generated by a deterministic volatility model. In order to run the simulation, we need

a reasonable value for ¾". We adopt an extension of the model of Roll (1984) and assume that the

option excess returns Rt+1 adhere to the following autoregressive process:

Rt+1 = ¹ + ½Rt + ¾´´t+1; ´t+1 » i:i:d:(0; 1) (19)

If returns are observed with error "t+1 then:

R̂t+1 = Rt+1 + ¾""t+1; "t+1 » i:i:d:(0; 1) (20)

Since measurement errors appear both on the left and right hand side of the equation, we can

identify the sampling errors from the innovations of the true process. Straightforward calculations

show that, given equations (19) and (20), the unconditional population moments of the observed

returns satisfy the following restrictions:

E0

·
bRt ¡

¹
1 ¡ ½

¸
= 0 (21)

E0

h
bRt¡1( bRt ¡ ¹ ¡ ½ bRt¡1)

i
= 0 (22)

V ar0
h
¢ bRt

i
= 2¾2

" + ¾2
´

µ
2

1 + ½

¶

Cov0
h
¢ bRt; ¢ bRt¡1

i
= ¡¾2

" ¡ ¾2
´

µ
1 ¡ ½
1 + ½

¶
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Cov0
h
¢ bRt; ¢ bRt¡2

i
= ½(1 ¡ ½)

1 + 2½
1 + ½

¾2
´ (23)

The model is overidenti¯ed and we can estimate the four parameters using the ¯ve moment

restrictions. We ¯nd that the noise to signal ratio in the data-set is ¾´¾" = 1:74% with ¾" = 38 basis

points. This compares with an average bid/ask spread of 83 cents for the at-the-money-option. We

conclude that there is sampling error, thus the need for a statistical test, but the size compares

very favorably with daily bid-ask spreads. We then simulate the returns and conduct the spanning

tests. For safety, we use a value for ¾" of 600 basis points which roughly matches the size of the

bid/ask spread. Table 6 reports the results.

Table 6, about here

Even with such a large value for the measurement error, we ¯nd that the empirical rejection

frequency is only 0.36% higher than the theoretical value when ½ = 1
2 . For test A, the highest

level of small sample bias is found in the case of ½ = 1. In this case, we reject the null hypothesis

1.63% more frequently than the 5% value implied by the asymptotic distribution. The size of the

small sample bias is too small to explain the sharp rejections found when the test is run on actually

observed option returns. It should be noticed that in order to better capture the small sample bias,

we simulate time series of option prices for 1000 trading days, less than half the size of the data-set

that we actually have. Therefore, the average small sample bias should be even smaller when we

run the empirical test on 2426 observations. We conclude that the rejection of the null hypothesis

based on empirical option returns is unlikely to be simply due to the presence of measurement

error. This seems reasonable since the measurement errors induce a bias in the test statistics only

if they are also priced.

5 Tests Based on the Model-Independent ±-Metric

Using both an unconditional and conditional approach, the tests based on the asymptotically

e±cient GMM metric strongly reject the null hypothesis that there are no additional priced risk-

factors. We are concerned that our results could be driven by the particular GMM metric used to

weight the pricing errors. In any GMM metric, the pricing errors are weighted by an estimate of

the inverse of the asymptotic covariance matrix. However, a well-known undesirable feature of the
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GMM metric is that it rewards models characterized by pricing kernels with large variances. The

larger the variance of the pricing kernel, the larger the variance of the pricing errors and therefore

the smaller the weighted quadratic criterion, for any given average level of pricing error. Moreover,

the GMM test need not be optimal in small samples.

Thus, in order to evaluate the robustness of the GMM results, we consider the alternative

approach by Hansen and Jagannathan (1997), which is not subject to the previous criticism. Let

m(¯) be a candidate parametric pricing kernel that is used to generate approximate prices for

securities with payo® p 2 P, so that ¼m(¯)(p) = E(m(¯)p). In deterministic volatility models,

a candidate pricing kernel m(¯) can be written as an exponential function of the continuously

compounded log return of a portfolio of two spanning assets. Since m(¯) completely describes the

asset pricing implications of any candidate model, a ranking of alternative candidate models can

be developed in terms of the pricing errors that are generated by di®erent candidate pricing factors

m(¯). Since any measure of pricing performance of a model depends on the speci¯c assets used

as benchmarks, Hansen and Jagannathan (1997) explore the properties of the maximum pricing

error generated by the candidate pricing kernel m(¯) with respect to all portfolios with payo® p.

Since any pricing deviation can be made arbitrarily large by increasing the leverage of the portfolio,

they consider the payo®s with unit second moment, E(p2) = 1, and de¯ne the following measure

of pricing performance:

± ´ max
p2P;E(p2)=1

¯̄
¼m(¯)(p) ¡ ¼(p)

¯̄
(24)

where ¼(p) are observed prices of the securities with payo® p. Thus, a model m(¯) is said to be

superior to an alternative model m(¯0) if the maximum pricing error, in absolute value, is lower

than the one generated by m(¯0). Clearly, this metric of model performance does not require the

two models to be nested. Hansen and Jagannathan (1997) show that a bound on the maximum

pricing error is given by the smallest second moment distance between the candidate pricing kernel

m(¯) and the space4 of admissible pricing kernels ~m 2 M :

± =min
~m2M

E (m(¯) ¡ ~m)2 (25)

The programming problem in Equation (25) is de¯ned with respect to an in¯nite dimensional

control variable. By considering its dual representation Hansen and Jagannathan (1997) show that
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its solution is given by:

±2 = [Epm(¯) ¡ E¼(p)]0Epp0 [Epm(¯) ¡ E¼(p)] (26)

The measure of pricing performance di®ers from the usual GMM metric since it depends on a

weighting matrix Epp0, which is invariant to the choice of the pricing kernel. There are two advan-

tages to the ±-metric. First, it is directly related to an economic concept, namely, the maximum

pricing error among all payo®s with standardized second moments. Second, it is invariant to the

volatility of the pricing imprecision and, more generally, to the statistical properties of the model

that is being tested.

However, since the ±-metric is not based on the asymptotically optimal weighting matrix, the

asymptotic distribution of the sample counterpart of ± is not chi-square. In order to describe the

spanning test de¯ned in terms of the ±-metric, let QT be a consistent estimator of the second moment

matrix of the unit cost payo®s (returns) QT ! Q ´ E(R0
tRt) and similarly to previous sections,

let hT be the sample average of the pricing errors of unit cost payo®s, hT = 1
T

PT
t=1(1 ¡ Rtmt(¯)).

Consistent estimators of ¯ can be obtained by minimizing the following sample analog of the ±-

metric:

d2T (¯) = hT (¯)0Q¡1
T hT (¯) (27)

Using results in Jagannathan and Wang (1997) we show in the appendix that:

Test 3 (Unconditional Test, ±-metric)

Under the null hypothesis that the assets in Rb are redundant given Ra and the unrestricted model

is overidenti¯ed, T
h
d2T (^̄r) ¡ d2T (^̄)

i
converges in distribution to a weighted sum of nb chi-square

distributions with one degree of freedom
Pnb
i=1 ¸iÂ2

(1).

The values of ¸i are the positive eigenvalues of a transformation of the score of the pricing errors

and they are fully characterized in the Appendix. The distribution can be tabulated numerically.

When the unrestricted model is exactly identi¯ed then d2T (^̄) is identically equal to zero. However,

the unrestricted model is never exactly identi¯ed in our implementations.

Next, we turn to the conditional test based on the ±-metric. The restriction E(mR ¡ 1) = 0 is

only a necessary condition for E(mR¡1jIt) to hold. Therefore, we explore a conditional version of

the test and we use the ±-metric to construct a spanning test valid also for time-varying managed

24



portfolios with initial cost Á(!t) and following period payo® Rt+¢tÁ(!t). Let Á(!t) be a function

measurable with respect to the information set It. Multiplying the conditional moment restriction

by Á(!t) and taking unconditional expectations, the conditional counterpart of Equation (27) is

given by the following criterion:

d2T (¯) =

2
4 1p
T

TX

t=1

0
@ ht+¢t

Á(!t) ­ ht+¢t

1
A

3
5
0

Q¡1
T

2
4 1p
T

TX

t=1

0
@ ht+¢t

Á(!t) ­ ht+¢t

1
A

3
5 (28)

with QT being a consistent estimator of Et

2
4
0
@ Rt+1

Rt+1 ­ Á(!t)

1
A

0
@ Rt+1

Rt+1 ­ Á(!t)

1
A
03
5.

As usual, the weights of the time-varying kernel-replicating portfolio are parametrized as in

Equation (17). This should capture more complex forms of non-linearities of the pricing kernel,

beyond the exponentially linear case.

Test 4 (Conditional Test, ±-metric)

Under the null hypothesis that the assets in Rb are redundant given Ra and the unrestricted model is

overidenti¯ed, T
h
d2T (^̄r) ¡ d2T (^̄)

i
converges in distribution to a weighted sum of n» ¢nb chi-square

distributions with one degree of freedom
Pn»nb
i=1 ¸iÂ2

(1), where n» is the number of conditioning

variables de¯ning the dynamic trading strategy »(!t).

5.1 Empirical results based on the model-independent ±-metric

We report the results for the unconditional tests based on the ±-metric in Table 7.

Table 7, about here

When we compare the results to the GMM results in Table 3, we ¯nd them to be very similar

for tests V IIa and V IIb. These two tests consider the incremental spanning due to the away-from-

the-money options. Interestingly, the results for the incremental spanning due to the risk-free rate,

which are reported in V IIc, did not change either, but the p-values increased in the post-crash and

overall samples. This pattern is even more pronounced in the conditional tests which we report in

Table 8.

Table 8, about here
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We compare the results to the conditional GMM results in Table 4. As above, the results are

virtually identical for tests V IIIa and V IIIb where we consider the incremental spanning due to the

away-from-the-money options. Again, we observe that the conditional tests based on the ±-metric

do not con¯rm the GMM results that the risk-free rate is needed for spanning in the post-crash

and overall samples. According to test V IIIc which reports the results under the ±-metric, the

conditional tests for model 4 do not reject the null hypothesis of redundancy of the risk-free rate in

any subsample. Additionally, for model 3 in the overall sample we cannot reject the null hypothesis

of redundancy of the risk-free rate at the 27% con¯dence level. This evidence is of particular

methodological interest as it shows the importance of comparing tests based on the GMM metric

to tests based on the ±-metric. It also suggests that additional priced risk-factors a®ect the returns

on options more than the risk-free rate.

6 Conclusions

In the recent empirical option pricing literature, several studies proposed extensions of the Black

and Scholes model based on a deterministic volatility process for the underlying assets. These

models are attractive for several reasons. First, in this class of models the market is dynamically

complete, so that derivative securities can be priced by no-arbitrage using standard replication

arguments. There is no need for general equilibrium models to characterize the behavior of the risk

premia and therefore no need to estimate them. Second, in some of these models the implied state

price density can be extrapolated in a way that is exactly consistent with observed option prices.

In this paper we study the dynamic implications of this class of models. Instead of running

a horse race in terms of the dollar value of the pricing errors of competing models, we construct

a statistical test of the main testable restriction of deterministic volatility models, namely, that

options are redundant securities. Two questions are asked. First, do the returns on the underlying

and the at-the-money option span the prices in the economy, or do we need additional information

from other option returns or the risk-free rate? Second, is there any di®erence before and after the

1987 crash in terms of the spanning properties of the option market?

We cast these questions into martingale restrictions on the pricing kernel. Testing our hypothe-

ses within this framework has several advantages. First, we can ask not only if volatility depends
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on additional risk-factors apart from the underlying, but also if these risk-factors are priced in

equilibrium. Second, we can avoid any distributional assumptions on the process of the underlying

since our tests are semi-parametric. Third, we do not need to make exogenous assumptions on the

structure of the measurement errors in order to obtain asymptotic test statistics. Also, we take

into account conditional information and we utilize both the cross-sectional and the time-series

dimension of option returns.

In terms of results, we present three main ¯ndings. First, all our tests suggest that the returns

of the in- and out-of-the-money options are needed for spanning purposes. These ¯ndings suggest

that returns on away-from-the-money options are driven by di®erent economic factors than those

relevant for at-the-money options. These di®erences became stronger since the 1987 crash, while

options appear to be redundant assets before the 1987 crash. Some authors have suggested that

away-from-the-money options are typically used by a di®erent clientele than their at-the-money

counterparts, an example being portfolio insurers. Our empirical results would be consistent with

such explanation.

Second, when using the model-independent ±-metric and running test V IIIc conditionally

(model 4) the risk-free rate is redundant in all subsamples. This suggests that accounting for

stochastic interest rates might not help too much in explaining option returns. Consequently,

modeling some other risk-factor, such as stochastic volatility or jumps, might be more bene¯cial.

Third, a comparison between the tests based on the model-dependent GMM metric and the

model-independent ±-metric underlines the importance of running robustness checks with respect

to the metric used. The risk-free rate is always redundant in the pre-crash period. The result

is robust to di®erent speci¯cations of the test. However, in the post-crash period the GMM test

rejects the null hypothesis of redundancy. This result is not con¯rmed when the ±-metric is used,

thus suggesting that the deterministic term structure of interest rates is not the most restrictive

assumption in order to price and hedge options.

Overall, these ¯ndings indicate that an important dimension of the dynamics of option prices

that is relevant for dynamic hedging strategies is not captured by deterministic volatility models.

As a practical implication, models need to incorporate additional priced risk-factors in order to

price exotic derivatives, formulate a e±cient portfolios, and construct hedges and dynamic risk

management strategies.
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Appendix: The Tests

If ¯r is the restricted set of parameters, we extend the results of Jagannathan and Wang (1997)

to show that:

Asymptotic Properties of Test 3 (± metric). Let DT = 1
TR0Y and ~DT = 1

TR0Yr, where

Yr is the (T £ kr) restricted matrix of pricing factors that are presumed to span the pricing kernel,

and DT ! D; ~DT ! ~D. Then:

T
h
d2T (^̄r) ¡ d2T (^̄)

i
!
k¡krX

i=1

¸iÂ2
(1)

¸ = eig
³
(W 1=2)

0
Q¡1=2

h
D(D0Q¡1D)¡1D0 ¡ ~D( ~D0Q¡1 ~D)¡1 ~D0

i
Q¡1=2W 1=2

´

with W 1=2 being the lower triangular Cholesky decomposition of the asymptotic covariance matrix

of the pricing errors
p

T [hT (¯0)], under the null hypothesis that the model is correctly speci¯ed and

with eig de¯ning the vector of eigenvalues.

Within the vector of eigenvalues ¸ only (k ¡ kr) eigenvalues are nonzero. The asymptotic

distribution is a weighted sum of (k ¡ kr) chi-square distributions with one degree of freedom.

Proof: We de¯ne d2(¯) to be the maximum least square population distance:

d2(¯) = E [ht(¯)]0 Q¡1E [ht(¯)]

with Q = E [R0
tRt]. The sample counterpart of this measure is:

d2T (¯) = [¶ ¡ DT¯]0 Q¡1
T [¶ ¡ DT¯]

where DT = 1
T R0

T
(n£T )

YT
(T£k)

, with YT being the matrix of pricing factors that are presumed to span

the space of returns, converge asymptotically to D and QT ! Q. Under the null hypothesis that

the model is correctly speci¯ed and ¯ = ¯o,
p

ThT (¯o) is distributed N(0; W ). The metric Q is

28



therefore not \optimal" in the GMM sense as Q¡1 6= W¡1. From the ¯rst order conditions and the

mean value theorem, it is easy to show that:

^̄
T =

¡
D0
TQ

¡1
T DT

¢¡1 D0
TQ

¡1
T ¶

and
p

ThT (^̄T ) =
h
In ¡ DT (D0

TQ
¡1
T DT )¡1D

0
TQ

¡1
T

ip
ThT (¯o)

Let ´ be N(0; I), then if we de¯ne W 1=2 to be the lower triangular Cholesky decomposition of W

so that W =
¡
W 1=2¢ ¡

W 1=2¢0 , we have:

p
ThT (^̄T ) =

h
In ¡ DT (D0

TQ
¡1
T DT )¡1D

0
TQ

¡1
T

i
W 1=2´

= P W 1=2´

Since d2T (^̄T ) = hT (^̄T )0Q
¡1
T hT (^̄T ), then:

d2T (^̄T ) = ´0(W 1=2)
0
h
Q¡1
T ¡ Q¡1

T DT (D0
TQ

¡1
T DT )¡1D

0
TQ

¡1
T

i
W 1=2´

De¯ne Q¡1=2 to be the lower triangular Cholesky decomposition of Q¡1 so that Q¡1 =
¡
Q¡1=2¢ ¡

Q¡1=2¢0 ,
we have:

d2T (^̄T ) =
h
´0(W 1=2)

0
Q¡1=2
T

i
M

h
(Q¡1=2
T )0W 1=2´

i

M =
h
In ¡ (Q¡1=2

T )0DT (D0
TQ

¡1
T DT )¡1D

0
TQ

¡1=2
T

i

Observe that M is idempotent and it has k linearly dependent components since:

D0
T

k£n
Q¡1=2
T M = 0

so that
h
(W 1=2)0Q¡1=2

T

i
M

h
(Q¡1=2
T )0W 1=2

i
has (n¡k) non-zero eigenvalues ¸i. Let H be the orthog-

onal matrix of eigenvector associated to the diagonal eigenvalue matrix ¤, so that
h
(W 1=2)0Q¡1=2

T

i

M
h
(Q¡1=2
T )0W 1=2

i
= H 0¤H. Let ~́ = H 0´, from the orthogonality of H, it follows that ~́ is

distributed N(0; I), so that:

Td2T (^̄T ) !
n¡kX

i=1

¸iÂ2
(1)

Consider now the restricted model:

~d2T (¯) =
h
¶ ¡ ~DT¯

i0
Q¡1
T

h
¶ ¡ ~DT¯

i
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where ~DT = 1
TR0
T

~YT , with ~YT being the restricted matrix of kr pricing factors that are presumed

to span the space of returns. Under the null hypothesis that the restrictions are satis¯ed:

p
ThT (~̄T ) = ~PW 1=2´

~P =
h
In ¡ ~DT ( ~D0

TQ
¡1
T

~DT )¡1 ~D
0
TQ

¡1
T

i

P has n ¡ kr non-zero eigenvalues, as ~D0
TQ

¡1
T P = 0.

Consider now the di®erence between the two LS distances, under the null that n ¡ kr pricing

factors do not span the pricing kernel:

p
T

h
hT (~̄T ) ¡ hT (^̄T )

i
= ( ~P ¡ P )

p
ThT (¯o)

= ( ~P ¡ P )W 1=2
L ´

T
h
d2T (~̄T ) ¡ d2T (^̄T )

i
= T

h
hT (~̄T ) ¡ hT (^̄T )

i0
Q¡1

h
hT (~̄T ) ¡ hT (^̄T )

i

Observe that:

(Q¡1=2)
0
h

~P ¡ P
i

=
h

~M ¡ M
i
(Q¡1=2)

0

so that:

T
h
d2T (~̄T ) ¡ d2T (^̄T )

i
= ´0

h
(W 1=2)

0
Q¡1=2

i
( ~M ¡ M)

h
(Q¡1=2)

0
W 1=2

i
´

Observe that if ~M and M are idempotents, then also ~M¡M is idempotent with (n¡kr)¡(n¡k) non-

zero elements, so that
h
(W 1=2)0Q¡1=2

i
( ~M ¡M)

h
(Q¡1=2)0W 1=2

i
has (k ¡ kr) non-zero eigenvalues

¸¤i . Let H¤ be the orthogonal matrix of eigenvectors associated to the diagonal eigenvalue matrix

¤¤, so that: h
(W 1=2)

0
Q¡1=2

i
( ~M ¡ M)

h
(Q¡1=2)

0
W 1=2

i
= H¤0¤¤H¤

Let ´¤ = H¤0´, from the orthogonality of H¤, it follows that ´¤ is distributed N(0; I), so that:

T
h
d2T (~̄T ) ¡ d2T (^̄T )

i
!
k¡koX

i=1

¸¤iÂ
2
(1)

¤
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Table 1
Trading Volumesa

year moneyness intervals

<0.95 0.95-0.97 0.97-0.99 0.99-1.01 1.01-1.03 1.03-1.05 >1.05

1986 18 13 18 22 15 13 16
1987 55 26 39 45 28 19 34
1988 15 6 11 20 16 12 24
1989 46 18 32 50 35 20 20
1990 81 32 47 82 60 39 80
1991 94 47 79 105 57 34 38
1992 77 50 77 99 66 39 31
1993 101 78 135 182 125 92 30
1994 133 113 191 317 215 130 86
1995 194 119 180 263 146 63 32
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Table 2a

Sample Statisticsb

mean stddev ½1 ½2 ½3

Rs 7 86 0.0865 -0.0234 -0.0509

Rf 2 2 0.0517 0.0484 0.0481

R0:96 25 1217 0.0658 -0.0229 -0.0012

R0:98 5 1467 0.0696 -0.0152 -0.0020

R1:00 3 1832 0.0825 0.0008 0.0017

R1:02 79 2412 0.0696 0.0187 0.0035

R1:04 351 3431 0.0411 0.0437 0.0173
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Table 2b

Coe±cients of Correlationc

Rs Rf R0:96 R0:98 R1:00 R1:02 R1:04

Rs 1 0.0031 0.9415 0.9288 0.9039 0.8519 0.7364

Rf 1 -0.0358 -0.0361 -0.0302 -0.0383 -0.0515

R0:96 1 0.9945 0.9791 0.9410 0.8284

R0:98 1 0.9916 0.9593 0.8478

R1:00 1 0.9798 0.8766

R1:02 1 0.9148

R1:04 1
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Table 3
Unconditional Martingale Tests (GMM)d

Test IIIa: R¤
a =

h
Rs; Rf

i
R¤

b = [R0:96; R1:04]

Pre-1987 Crash Post-1987 Crash Overall Sample
dT -value 2.15 173.07 83.83

p-value 34% <1% <1%

Test IIIb: R¤
a = [Rs; R1:00] R¤

b = [R0:96; R1:04]

Pre-1987 Crash Post-1987 Crash Overall Sample

dT -value 39.44 172.00 148.17

p-value <1% <1% <1%

Test IIIc: R¤
a = [Rs; R1:00] R¤

b = [Rf ]

Pre-1987 Crash Post-1987 Crash Overall Sample

dT -value 0.15 63.46 34.84

p-value 70% <1% <1%
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Table 4
Conditional Martingale Tests (GMM)e

Test IVa: R¤
a =

h
Rs; Rf

i
R¤

b = [R0:96; R1:04]

Model 1 Pre-1987 Crash Post-1987 Crash Overall Sample

dT ¡ value 2.60 236.50 152.21

p-value 63% <1% <1%

Model 2
dT ¡ value 1.45 240.57 210.24

p-value 96% <1% <1%

Model 3
dT ¡ value 1.27 191.00 86.06

p-value 87% <1% <1%

Model 4

dT ¡ value 2.71 190.58 77.23

p-value 84% <1% <1%
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Table 4, continue
Conditional Martingale Tests (GMM)

Test IVb: R¤
a = [Rs; R1:00] R¤

b = [R0:96;R1:04]

Model 1 Pre-1987 Crash Post-1987 Crash Overall Sample
dT -value 43.11 176.01 165.73

p-value <1% <1% <1%

Model 2

dT -value 38.85 222.29 269.03

p-value <1% <1% <1%

Model 3
dT -value 40.58 189.09 175.13

p-value <1% <1% <1%

Model 4
dT -value 35.60 202.24 183.57

p-value <1% <1% <1%

Test IVc: R¤
a = [Rs; R1:00] R¤

b =
h
Rf

i

Model 1 Pre-1987 Crash Post-1987 Crash Overall Sample
dT -value 0.66 110.02 81.04

p-value 71% <1% <1%

Model 2
dT -value 0.06 108.67 110.41

p-value 99% <1% <1%

Model 3

dT -value 0.94 65.82 36.75

p-value 63% <1% <1%

Model 4
dT -value 0.002 63.86 44.49

p-value 100% <1% <1%
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Table 5

Estimation of Bias in Test Statisticsf

Empirical Rejection Frequency

Test A:
R¤

a = [Rs; R1:00]

R¤
b = [R0:98; R1:02]

Test B:
R¤

a = [Rs; R1:00]

R¤
b = [Rf ]

p ¡ value

3.45% 4.02% 5%
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Table 6

Bias in Test Statistics Due to Observation Errorg

¾" ½ Rejection Frequency p-value

Test A Test B

R¤a = [Rs; R1:00]

R¤b = [R0:98;R1:02]

R¤a = [Rs; R1:00]

R¤b = [Rf ]

6% 0 5.32% 7.64% 5%

6% 1
2 5.36% 5.36% 5%

6% 1 6.63% 4.76% 5%

Average Bias 0:77% 0:92%
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Table 7
Unconditional Martingale Tests (± metric)h

Test V IIa: R¤
a =

h
Rs; Rf

i
R¤

b = [R0:96;R1:04]

Pre-1987 Crash Post-1987 Crash Overall Sample

~±
2
T -value 0.34 189.00 84.41

p-value 87% <1% <1%

Test V IIb: R¤
a = [Rs; R1:00] R¤

b = [R0:96; R1:04]

Pre-1987 Crash Post-1987 Crash Overall Sample

~±
2
T -value 25.16 217.73 244.58

p-value <1% <1% <1%

Test V IIc: R¤
a = [Rs; R1:00] R¤

b =
h
Rf

i

Pre-1987 Crash Post-1987 Crash Overall Sample

~±
2
T -value 0.17 20.48 6.14

p-value 51% <1% <1%
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Table 8
Conditional Martingale Tests (± metric)i

Test V IIIa: R¤
a =

h
Rs; Rf

i
R¤

b = [R0:96; R1:04]

Model 1 Pre-1987 Crash Post-1987 Crash Overall Sample

~±
2
T -value 0.47 209.93 159.89

p-value 98% <1% <1%

Model 2

~±
2
T -value 4.22 209.23 177

p-value 72% <1% <1%

Model 3

~±
2
T -value 3.53 190.79 84.50

p-value 60% <1% <1%

Model 4

~±
2
T -value 2.43 177.00 77.47

p-value 91% <1% <1%
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Table 8, continue
Conditional Martingale Tests (± metric)

Test V IIIb: R¤
a = [Rs; R1:00] R¤

b = [R0:96;R1:04]

Model 1 Pre-1987 Crash Post-1987 Crash Overall Sample

~±
2
T -value 27.12 215.76 221.60

p-value <1% <1% <1%

Model 2

~±
2
T -value 27.56 274.37 240.25

p-value <1% <1% <1%

Model 3

~±
2
T -value 27.60 230.35 265.50

p-value <1% <1% <1%

Model 4

~±
2
T -value 24.66 220.55 264.71

p-value <1% <1% <1%

Test V IIIc: R¤
a = [Rs; R1:00] R¤

b = [Rf ]

Model 1 Pre-1987 Crash Post-1987 Crash Overall Sample

~±
2
T -value 0.72 42.49 33.37

p-value 80% <1% 2%

Model 2

~±
2
T -value 0.42 48.93 42.01

p-value 98% <1% 2%

Model 3

~±
2
T -value 0.53 24.75 7.08

p-value 84% <1% 23%

Model 4

~±
2
T -value 1.03 8.40 13.17

p-value 91% 42% 27%
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Table Notes

a. [Table 1] Average daily trading volume in million US dollars of all put and call options with

maturities spanning 45 days. Volume is expressed in terms of the notional value of the contracts.

b. [Table 2a] This table reports mean, standard deviation, and the ¯rst three sample autocorre-

lation coe±cients ½ of returns on the underlying asset Rs, the risk-free rate Rf , and the ¯ve option

returns Ri where i indicates the moneyness level KS . The units of measure are basis points per day.

c. [Table 2b] This table reports the contemporaneous correlations of returns on the underlying

asset Rs, the risk-free rate Rf , and the ¯ve option returns Ri where i indicates the moneyness level
K
S .

d. [Table 3] We test the null hypothesis that Ho : ¯b = 0 in the martingale retriction:

0 = E [1 ¡ mt;t+¢tRt;t+¢t]

mt;t+¢t = exp(
X

j

¯0aR
¤
a;tj + ¯0bR

¤
b;tj )

The test is based on the pricing errors ht+¢t = 1 ¡ mt+¢tRt+¢t by forming:

JT =

"
1p
T

TX

t=1

ht(m(¯;R¤); R)

#0
W¡1
T

"
1p
T

TX

t=1

ht(m(¯;R¤); R)

#

and computing the di®erence dT ´ JT (¯a; ¯b = 0;R)¡JT (¯; R) which is distributed under the null

as a Â2
(nb)

, where nb is the number of restricted parameters. R is the vector of returns on seven

assets, R = [Rs, Rf , R0:96, R0:98, R1:00, R1:02, R1:04]. Rs is the return on the underlying asset and

Rf is the risk-free rate. The remaining ¯ve returns are on options with with levels of moneyness

of 0.96, 0.98, 1.00, 1.02, and 1.04. R¤
tj are the log returns sampled at frequency ¢t

n in the interval

[t; t + ¢t]. At the ¯rst stage, we initialize the weighting matrix to be the covariance matrix of

the pricing errors associated with the risk neutral pricing kernel mt = 1=rft . The ¯nal estimates

are obtained at the second stage after updating the weighting matrix using a 5 lag Newey-West

estimator of the covariance matrix of the ¯rst stage pricing errors.

e. [Table 4] We test the null hypothesis that Ho : ¯b = 0 in the following martingale retriction

for the hedging errors of time varying managed portfolio of options:
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0 = E [ht;t+¢tjIt]

ht+¢t =

2
4 1

1 ­ Á(!t)

3
5 ¡ mt;t+¢t

2
4 Rt+¢t

Rt+¢t ­ Á(!t)

3
5

mt;t+¢t = exp(
X

j

¯0tj ;aR
¤
a;tj + ¯0t;bR

¤
b;tj)

The parameters ¯ 2 It are time varying and parameterized as functions of the variables Á(!t) in

the information set as ¯t = ¯0Á(!t). The test statistics is based on:

JT =

"
1p
T

TX

t=1

ht+¢t

#0
W¡1
T

"
1p
T

TX

t=1

ht+¢t

#

We compute the di®erence dT ´ JT (¯a; ¯b = 0;R) ¡ JT (¯;R) which is distributed, under the null,

as a Â2
(n!nb)

, where n! is the number of conditioning variables (including the unit vecto) and nb and

na are the number of restricted and unrestricted parameters respectively. R is the vector of returns

on seven assets, R = [Rs, Rf , R0:96, R0:98, R1:00, R1:02, R1:04]. Rs is the return on the underlying

asset and Rf is the risk-free rate. The remaining ¯ve returns are on options with with levels of

moneyness of 0.96, 0.98, 1.00, 1.02, and 1.04. R¤
tj are the logarithimc returns sampled at frequency

¢t
n in the interval [t; t+¢t]. The conditioning variables are polynomials in the underlying asset, as

in equation (17). At the ¯rst stage, we initialize the weighting matrix to be the covariance matrix of

the pricing errors associated with the risk neutral pricing kernel mt = 1=rft . The ¯nal estimates are

obtained at a second stage after updating the weighting matrix using a 5 lag Newey-West estimator

of the covariance matrix of the ¯rst stage pricing errors.

f. [Table 5] We simulate 1000 days of the following CEV model:

dSt
St = (¹ ¡ d)dt + ¾S½¡1t dWt

We initialize the parameters at their historical sample averages with ¹ = 13:58%; r = 5:43%,

d = 3:12%, ¾S½¡1o = 16:16% with ½ = 1=2. The simulated option prices have maturity of 45 days

and moneyness levels equal to 0.98 and 1.02. The values reported in the table are the \Rejection

Frequency" of two types of Chi-square tests. These are the the empirical frequencies at which the

¢JT test statistics is higher than the Chi-square level for a 5% p-value. If the bias is zero then the

\Rejection Frequency" should be 5%.
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g. [Table 6] We simulate 1000 days of the following CEV model:

dSt
St = (¹ ¡ d)dt + ¾S½¡1t dWt

We initialize the parameters at their historical sample averages with ¹ = 13:58%; r = 5:43%,

d = 3:12%, ¾S½¡1o = 16:16%. For di®erent values of ½ we simulate option prices with a maturity of

45 days and moneyness levels equal to 0.98, 1.00 and 1.02. Let Rt be the return on an option, and

let R̂t be the return of the option observed with measurement error

R̂t = Rt + "t; "t » iid(0; ¾")

The \Rejection Frequency" is the empirical frequency at which the ¢JT test statistics is higher

than the Chi-square level for a 5% p-value. If the bias is zero then the \Rejection frequency" should

be 5%.

h. [Table 7] We test the null hypothesis that Ho : ¯b = 0 in the martingale retriction:

0 = E [1 ¡ mt;t+¢tRt;t+¢t]

mt;t+¢t = exp(
X

j

¯0aR
¤
a;tj + ¯0bR

¤
b;tj )

The test is based on the pricing errors ht+¢t = 1 ¡ mt+¢tRt+¢t by forming:

±2T =

"
1p
T

TX

t=1

ht(m¤(¯;R¤); R)

#0
Q¡1
T

"
1p
T

TX

t=1

ht(m¤(¯; R¤); R)

#

with Ra being the matrix of pricing factors that are supposed to span the pricing kernel and QT

being a consistent estimator of the second moment matrix of the returns QT ! Q = E(R0
tRt). The

statistics ~±
2
T ´ ±2T (¯a; ¯b = 0;R) -±2T (¯; R) is shown to be distributed, under the null, as a weighted

sum of Â2
(1) and can be tabulated numerically. R is the vector of returns on seven assets, R = [Rs,

Rf , R0:96, R0:98, R1:00, R1:02, R1:04]. Rs is the return on the underlying asset and Rf is the risk-free

rate. The remaining ¯ve returns are on options with with levels of moneyness of 0.96, 0.98, 1.00,

1.02, and 1.04. R¤
tj are the logarithmic returns sampled at frequency ¢t

n in the interval [t; t + ¢t].

i. [Table 8] We test the null hypothesis that Ho : ¯b = 0 in the following martingale retriction

for the hedging errors of time varying managed portfolio of options:
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0 = E [ht;t+¢tjIt]

ht+¢t =

2
4 1

1 ­ Á(!t)

3
5 ¡ mt;t+¢t

2
4 Rt+¢t

Rt+¢t ­ Á(!t)

3
5

mt;t+¢t = exp(
X

j

¯0tj ;aR
¤
a;tj + ¯0tj ;bR

¤
b;tj )

The parameters ¯ 2 It are time varying and parameterized as functions of the variables Á(!t) in

the information set as ¯t = ¯0Á(!t). The test statistics is based on:

±2T (¯) =

"
1p
T

TX

t=1

ht+¢t

#0
Q¡1
T

"
1p
T

TX

t=1

ht+¢t

#

with Ra being the matrix of returns on the subset of assets that are conjectured to span the time

varying investment opportunity set and Á(!t) 2 It, and QT being a consistent estimator of the

second moment matrix of the returns QT ! Q = E(R0
tRt). De¯ning ~±

2
T ´ ±2T (¯a; ¯b = 0;R) -

±2T (¯; R); we show that ~±
2
T is distributed, under the null, as a weighted sum of Â2

(1) that can be

tabulated numerically. R is the vector of returns on seven assets, R = [Rs, Rf , R0:96, R0:98, R1:00,

R1:02, R1:04]. Rs is the return on the underlying asset and Rf is the risk-free rate. The remaining

¯ve returns are on options with with levels of moneyness of 0.96, 0.98, 1.00, 1.02, and 1.04. R¤
tj are

the log-returns sampled at frequency ¢t
n in the interval [t; t + ¢t]. The conditioning variables are

polynomials in the level of the underlying asset as in equation (17).
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Notes

1If E (bb0jI) is non-singular, then the trading strategy c that generates a given payo® p is

determined uniquely.

2The stochastic discount factor » also characterizes the Radon-Nikodym derivative that de¯nes

the change of probability measure from the objective measure Q to the risk neutral measure ~Q under

which all asset prices (unscaled) are martingale processes. If Z is the price of a zero coupon bond,

then d
~Q
dQ is given by E

³
d ~Q
dQ jIt+1

´
= »t+1

»t
Z¡1
t;t+1. The measure ~Q is usually called \risk neutral" since

it is such that any no-arbitrage price can be represented as ¼t(pt+1) = Zt;t+1E ~Q(pt+1jIt). However,

this representation is less tractable from an econometric perspective since security prices can only

be sampled under the objective measure Q.

3Since our data-set includes minute by minute quotes and trading prices, for each sample period

[t; t + ¢t], we consider the subsequence of log returns R¤
t;t+¢t;n = fR¤

t;t+¢t=n ; R¤
t+¢t=n;t+2¢t=n

; R¤
t+2¢t=n;t+3¢t=n ... R¤

t+(n¡1)¢t=n;t+¢tg, where R¤
t;t+¢t=n = ln(p(t+¢t=n)

p(t) ), with p being the price of

a security. As n ! 1, the pricing kernel mt;t+¢t is replicated by a dynamic trading strategy on a

set of primitive securities with subperiod returns R¤
t;t+¢t;n.

4In the space L2 of square integrable payo®s, the pricing kernel that satis¯es the Principle of

No Arbitrage is not unique. We denote by M the subspace of ~m 2 L2 that satis¯es the relation

1 = E( ~mp).
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